

Cancer Metabolism

- Cancer cells have different food preferences than normal cells
- Cancer cells grow in nutrient poor conditions

Guiding principles

- Cancer metabolism is unique in the body-easier to find
- Metabolism therapies can be as simple as vitamin supplements
- Standard chemotherapy could benefit with help of metabolism therapies

Davidson et al. 2021. Surgical Onc.

Glucose is used to *find* tumors What might we use to *fight* them?

Appendiceal cancer (cancer of the appendix)

- Rare cancer (1 in a million)
- Slow growing and hard to detect
- Can be removed if caught early
- Chemo resistant difficult to treat

Research Problem:

There are no effective chemotherapies for appendiceal cancer

The Peritoneal Cavity (PC)

- No blood supply
- Tumors that spread to the peritoneal cavity are removed by Dr. Eng and his team.

Adapted from Guiral et al. Nature Reviews Disease Primers. 2021

Are tumors that grow in a nutrient poor environment vulnerable to a change in their dietary menu?

Approach:

- Our first step was to understand the appendiceal cancer "community"
- To do this we are going to look at how appendiceal uses DoorDash.

RNA is the "order" part of the process.

Central Dogma of Pieology

We use RNA sequencing to get a copy of these orders

What can we do with these data.... these Doordash orders?

Here at UCI, we are cooking up something for Appendiceal cancer

Chef Eng

Chef Hanse

What kind of restaurant should we open?

- What are tumors eating in this area?
- What dishes are they ordering?

What dishes are being ordered?

RNA sequencing tells us how many times a gene has asked for a protein

In this similarity, its how many times a dish is being ordered from a neighborhood

Google

What are the cancer cells ordering with their RNA?

With 30,000 genes in the genome, this can be an enormous amount of data

Computers help us identify which restaurants the cancer cells are using based on the dishes ordered

Once we know which restaurants are being used, we will come in and shut them down

Back to cancer

• What are the appendiceal cancer cells ordering with their RNA?

Gene Name	log2FoldChange	pvalue	Gene Name	log2FoldChange	pvalue
ENSG00000203335	5.85	1.8E-07	PLK1	-4.17	7.2E-08
ENSG00000286848	5.36	6.1E-04	FMN1	-4.17	3.1E-04
ENSG00000278456	4.09	2.1E-09	TSHZ2	-4.23	2.3E-05
SMARCB1	4.06	1.5E-04	GTF2A2	-4.30	3.2E-06
GNGT1	3.97	4.5E-04	ENSG00000269495	-4.32	7.5E-07
ETV7	3.72	5.0E-05	HOXB-AS3	-4.49	3.6E-12
LINC01940	3.58	7.9E-05	RNF38	-4.61	1.1E-05
ENSG00000205037	3.48	7.8E-05	C9orf50	-4.66	1.3E-07
PXT1	3.40	8.2E-04	MFSD14B	-4.68	3.3E-07
ABCA8	3.16	2.1E-04	IL1B	-4.75	4.1E-06
ENSG00000290062	3.15	1.4E-05	IL1A	-4.80	6.7E-06
EVC	3.15	2.2E-04	CROCC2	-4.97	4.8E-06
KCTD19	3.14	1.4E-04	BAHCC1	-5.16	1.7E-05
ENSG00000290010	3.06	1.5E-04	HOXB-AS4	-5.20	4.0E-07
ENSG00000264843	3.06	2.2E-03	GDE1	-5.23	1.8E-06
LINC00702	3.05	1.9E-04	IDI1	-5.57	2.1E-06
ENSG00000290038	2.93	1.0E-04	C12orf43	-5.63	1.8E-12
STK32A	2.92	2.3E-03	MYO16	-5.69	1.4E-05
ALDH1A3-AS1	2.86	4.4E-04	GRTP1-AS1	-5.80	2.6E-13
TMEM52B	2.84	2.4E-03	USP37	-5.82	5.6E-20
GNA12	2.84	1.3E-04	LINC02997	-6.33	2.3E-06
TSTD2	2.82	2.6E-03	PNPO	-6.45	6.9E-10
ENSG00000253420	2.80	3.2E-06	LINC02042	-6.70	4.1E-08
ENSG00000254192	2.73	4.5E-05	PKD2L2-DT	-6.99	1.5E-07

Top up regulated (red) genes And down regulated (blue) genes

These are the tallied "orders"

Show is the average of n=4 patients per group

Hanse et al. 2023. Annals. Surg. Onc.

Using Pathway Analysis tools, we can sort these genes into groups

HALLMARK ADIPOGENESIS

HALLMARK ALLOGRAFT REJECTION

HALLMARK ANDROGEN RESPONSE

HALLMARK ANGIOGENESIS

HALLMARK APICAL JUNCTION

HALLMARK_APICAL_SURFACE

HALLMARK APOPTOSIS

HALLMARK_BILE_ACID_METABOLISM

HALLMARK_CHOLESTEROL_HOMEOSTASIS

HALLMARK COAGULATION

HALLMARK COMPLEMENT

HALLMARK DNA REPAIR

HALLMARK E2F TARGETS

HALLMARK EPITHELIAL_MESENCHYMAL_TRANSITION

HALLMARK ESTROGEN RESPONSE EARLY

HALLMARK ESTROGEN RESPONSE LATE

HALLMARK FATTY ACID METABOLISM

HALLMARK G2M CHECKPOINT

HALLMARK GLYCOLYSIS

HALLMARK HEDGEHOG SIGNALING

HALLMARK HEME METABOLISM

HALLMARK HYPOXIA

HALLMARK IL2 STAT5 SIGNALING

HALLMARK IL6 JAK STAT3 SIGNALING

HALLMARK INFLAMMATORY RESPONSE

HALLMARK INTERFERON ALPHA RESPONSE

HALLMARK_INTERFERON_GAMMA_RESPONSE

HALLMARK KRAS SIGNALING DN

HALLMARK_KRAS_SIGNALING_UP

HALLMARK_MITOTIC_SPINDLE

HALLMARK_MTORC1_SIGNALING

HALLMARK MYC TARGETS V1

HALLMARK MYC TARGETS V2

HALLMARK MYOGENESIS

HALLMARK NOTCH SIGNALING

HALLMARK OXIDATIVE PHOSPHORYLATION

HALLMARK_P53_PATHWAY

HALLMARK PANCREAS BETA CELLS

HALLMARK PEROXISOME

HALLMARK PI3K AKT MTOR SIGNALING

HALLMARK PROTEIN SECRETION

HALLMARK REACTIVE OXYGEN SPECIES PATHWAY

HALLMARK SPERMATOGENESIS

HALLMARK TGF BETA SIGNALING

HALLMARK TNFA SIGNALING VIA NFKB

HALLMARK UNFOLDED PROTEIN RESPONSE

HALLMARK_UV_RESPONSE_DN

HALLMARK UV RESPONSE UP

HALLMARK_WNT_BETA_CATENIN_SIGNALING HALLMARK XENOBIOTIC METABOLISM Think of these as the restaurants!

Appendix cancer dines at the restaurant of OXPHOS

The genes or "menu items" are represented by color intensity

Hanse et al. 2023. Annals. Surg. Onc.

What is OXPHOS?

How do we shut down OXPHOS?

Metformin is an OXPHOS inhibitor

- FDA approved since 1994 (Glucophage)
- Treatment for diabetes
- In 2022, 20 million Americans were prescribed metformin
- Derived from French Lilac plant

The Pipeline

UCI Douglas Hospital

Appendiceal cancer is sensitive to metformin

The response to metformin is durable

Day 30

Next Steps

- Does metformin enhance current chemotherapy?
- How does metabolism change after metformin?
- Clinical trials?

Summary

- Appendiceal cancer is a rare and difficult cancer to treat
- Grows in a low nutrient environment: the peritoneal cavity
- It increases its OXPHOS to survive
- Inhibition of OXPHOS with metformin is a potential therapy

Acknowledgements

- Oliver Eng, MD, FACS
- · Mei Kong, PhD
- · Delia Tifrea, PhD, MBA
- · Maheswari Senthil, MD
- · Alex Kim, MD
- Tianhong Wang
- · Katie Waldvogel

- · Ying Yang, PhD
- Bryan Ruiz
- Qi Fan
- · Yuanding Li
- Nicole Kang
- Katie Waldvogel
- · Virginia Fontenot, MD

 Funding for this project provided by the UCI Institute of Clinical and Translational Sciences Pilot Grant (EH, OE, MK)

